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Temporal local clustering coefficient uncovers the hidden pattern in temporal networks

Bofan Chen ,1,2 Guyu Hou,1,3 and Aming Li 1,4,*

1Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
2School of Economics, Peking University, Beijing 100871, People’s Republic of China

3Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People’s Republic of China
4Center for Multi-Agent Research, Institute for Artificial Intelligence, Peking University, Beijing 100871, People’s Republic of China

(Received 22 July 2023; revised 13 March 2024; accepted 7 May 2024; published 5 June 2024)

Identifying and extracting topological characteristics are essential for understanding associated structures and
organizational principles of complex networks. For temporal networks where the network topology varies with
time, beyond the classical patterns such as small-worldness and scale-freeness extracted from the perspective of
traditional aggregated static networks, the temporality and simultaneity of time-varying interactions should also
be included. Here we extend the traditional analysis on the local clustering coefficient C in static networks and
study the dynamical local clustering coefficient of temporal networks. We demonstrate that the temporal local
clustering coefficient TC conveys the hidden information of nodes’ neighboring connectance when interactions
occur at various rhythms. By systematically analyzing various empirical datasets, we find that TC uncovers
different interaction patterns in different types of temporal networks. Specifically, we show that TC has a strong
positive correlation with C in efficiency-related networks, whereas they are uncorrelated in social activity-related
networks. Moreover, TC helps to exclude interference from accidental interactions and reflect the actual
clustering properties of network nodes. Our results shed light on the importance of digging into dynamical
characteristics to fundamentally understand the underlying temporal structures of real complex systems.
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I. INTRODUCTION

The complex network plays an essential role in our under-
standing of various complex systems, where nodes indicate
system components and edges define the interactions between
them [1–3]. It has deepened our insight into various scenarios,
including social interactions [4], transportation [5], microbial
population structure [6], etc. Numerous intriguing dynamics
have been scrutinized within this specialized framework, such
as the evolution of cooperation [7], epidemic processes [8],
and synchronization [9], which greatly enhance our under-
standing of natural phenomena.

Understanding and describing the underlying patterns and
properties of networks in different scenarios is the first but
important step for further investigation. Over the past two
decades, scientists from diverse backgrounds have constructed
various models and measures to characterize different net-
works. For static networks, scale-free [10] and small-world
[11] attributes are reported by extracting certain specific fea-
tures, providing us with statistical insights into our daily
interactions. Apart from these models that capture global
properties, scientists have also proposed many other measures
to quantify local properties of the static networks, such as the
rich club coefficient [12–14], local clustering coefficient [15],
community structure [16], to name a few.

However, real-world networks often undergo dynamic
changes over time [17], making it challenging to uncover the
underlying dynamic patterns solely through traditional static
models or measures [7,18,19]. Recently, in the context of
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temporal networks, researchers have also defined a certain
number of temporal measures based on their time-varying
properties including temporal centrality [20], correlation [21],
and motifs [22,23], which facilitate our understanding of
systems’ evolutionary dynamics. Although some of these
measures are directly extended from the existing measures of
static networks, they give more insightful inspirations. For ex-
ample, based on the rich club coefficient, Pedreschi et al. [24]
proposed the temporal rich club coefficient. Their important
findings reveal that although certain datasets exhibit the rich
club phenomenon in static networks, the frequent interactions
among large-degree nodes may not be simultaneous or stable
in the corresponding temporal networks.

The local clustering coefficient is a classical measure for a
node in static networks, which quantifies how close its neigh-
bors are to being a clique (every two neighbors are connected
by edges). However, in the case of temporal networks, we
cannot accurately capture the temporal clustering properties
of nodes only through the local clustering coefficient. In other
words, we lack information regarding whether the clustering
interactions of nodes occur simultaneously or frequently.

To address this limitation, we propose the temporal local
clustering coefficient in this paper, which takes into account
the interaction time of nodes, enabling the investigation of
nodes’ clustering properties in temporal networks. We also
evaluate our proposed measure by using a total of eight human
activity datasets. We find that the proposed temporal local
clustering coefficient can serve as an efficient identifier to
distinguish different core-driven patterns of temporal net-
works like efficiency-related networks and social activity-
related networks. Additionally, we also notice that the
temporal local clustering coefficient can sensitively identify
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FIG. 1. Illustration of the concept of temporal local clustering coefficient. (a) A schematic illustration of a static network. The degree ki of
the black node i is three. The orange nodes are the neighbors of node i, and the local clustering coefficient (Ci) of node i is calculated through
the orange edges among its neighbors divided by all the number of edges that could possibly exist among them. (b) A schematic illustration
of a temporal network as a series of snapshots corresponding to the aggregated static network in panel (a). TCi is computed by the average of
Ci(t ) over each snapshot when ki(t ) �= 0. (c) Example of the case where significant differences exist between TCi and Ci for the temporal and
corresponding static networks.

noise in temporal networks, enabling a more accurate reflec-
tion of the connections among nodes’ neighbors. Finally, we
discover different interaction patterns for various empirical
datasets by comparing the underlying relationship between
temporal and static local clustering coefficients.

II. THE TEMPORAL LOCAL CLUSTERING COEFFICIENT

There are many complex interactions in social activities
that we can represent through networks. Rigorously, a tem-
poral network G = {Gt |t ∈ {1, 2, . . . , T }} is composed of a
series of snapshots Gt = (V, Et ). Each snapshot is a net-
work with a set of nodes V = {1, 2, . . . , N} and a set of
temporal edges Et = {e1, e2, . . . , eE |eq = (i, j), i, j ∈ V, q =
1, 2, . . . , E}. In addition to the temporal network G, there
exists a corresponding static network Gs = (V,L), where
L = ⋃

t Et . In other words, the static network is obtained by
aggregating all the snapshots over time [Figs. 1(a) and 1(b)].
Based on the static network, we can further define the weight
of each edge wi j = |�i j |, where �i j = {t |(i, j) ∈ Et } is the
set of occurrence times for each edge and |�i j | indicates the
number of elements in the set �i j .

Our goal is to quantify the clustering phenomenon for
every node in G while considering its temporality, that is, how
close the neighbors are in each snapshot. We recall that for
each node i in a static network, the local clustering coefficient
C is defined by

Ci = |{( j, k)| j, k ∈ Vi, ( j, k) ∈ L}|
ki(ki − 1)/2

(if ki � 1, then Ci = 0), where Vi = { j|(i, j) ∈ L} is the set
of neighbors of node i and ki = |Vi| is the degree of node
i [Fig. 1(a)]. Ci is given by the number of edges among the
nodes’s neighbors divided by the number of edges that could
possibly exist among them. Ci will be close to one if the
neighbors of node i are closely connected, while Ci will be
zero if none of its neighbors interact with each other.

To take into account the network temporality, we calculate
the local clustering coefficients Ci(t ) and degrees ki(t ) of
node i over each snapshot Gt at time t . Then we combine
information from all snapshots and define the temporal local
clustering coefficient TC for node i as

TCi =
∑T

t=1 Ci(t )
∑T

t=1 1(ki(t ) > 0)

(if
∑T

t=1 1(ki(t ) > 0) = 0, then TCi = 0), which is illustrated
in Fig. 1(b). It can be interpreted as the average of Ci(t ) over
the active period at which the degree of i satisfies ki(t ) � 1.
Here, 1(ki(t ) > 0) is an indicator function that equals one
if ki(t ) > 0, and zero otherwise. From the definition, we
can see that TCi is computed from Ci(t ) of each snapshot.
Figure 1(c) shows that even if the Ci(t ) of every snapshot
is large, there is no guarantee that the static local clustering
coefficient Ci should also be large. Since Ci(t ) and Ci are
not directly related, the performance of TCi and Ci can be
distinct on different temporal networks. Only by satisfying
the simultaneity of interactions, Ci can be similar to Ci(t ) and
accordingly have a strong correlation with TCi. Therefore,
the value of TCi not only depends on the closeness of the
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FIG. 2. Simulation results. (a) A schematic illustration of the temporal network generating model. There are N = 100 individuals
wandering randomly in the finite plane of [−1, 1] × [−1, 1]. Initially, the position of each individual is randomly distributed in the plane.
At each time step, each individual moves a distance v in a random direction, where v follows a uniform distribution of [0,1]. If the movement
hits the edge of the plane, it chooses another random direction and moves again. When nodes move together into the two green circular regions
in the plane, they interact with each other. Repeating accordingly for T = 100 times, we obtain a simulated interaction temporal network with
strong dynamic clustering property. (b) The difference between temporal local clustering coefficient TC and static local clustering coefficient
C. The horizontal and vertical coordinates represent C and TC, respectively. For each node i, we calculate its Ci and TCi, and then create a
scatter plot to visualize the results. The degrees of nodes are shown in dots with different sizes: the larger the degree, the larger the size of the
dot. The weighted degrees kw (that is, the sum of the connected edges’ weights) of nodes are shown in color. There are two reference lines
in the figure: The black dotted line represents the reference line for TC = C; the red dashed line represents the reference line for TC = pC,
where p is the average frequency of an edge interacting in a single snapshot, i.e., p = ( 1

T �T
1 |Et |)/|L| denotes the average of occurrences of all

temporal edges divided by the number of edges in the static network. It is clear that TC is generally much larger than C in this strong clustering
case, showing the superiority of TC.

interactions around the node i in the static network Gs, but
also is closely related to the simultaneity of interactions
around the node i.

To demonstrate the superiority of using the temporal local
clustering coefficient to describe dynamic clustering proper-
ties, we calculate TC on synthetic data as in the proposed
model in Ref. [9] and compare the difference between TC
and C in this simulated scenario. As shown in Fig. 2(a), we
assume that there are several individuals randomly walking
in a plane. When some nodes move together into certain
specific regions, they interact with each other together. Fi-
nally, the time-varying interactions between nodes will form
a simulated temporal network. This model reflects the inter-
action network with strong dynamic clustering property in
society, where individuals meet in the interaction region they
all choose to interact with everyone around them. We find that
the static local clustering coefficient C does not show a strong
dynamic clustering property, which is only around 0.5. In
contrast, the temporal local clustering coefficient TC of most
nodes is close to one, which is much higher than C [Fig. 2(b)].
Therefore, in this strong clustering case, we present that TC
is more suitable than C to capture the clustering properties of
temporal networks.

III. TC OF EMPIRICAL TEMPORAL NETWORKS

To illustrate the significance of the temporal local
clustering coefficient TC, we explore the dynamical patterns
within temporal networks from eight empirical datasets.
In these real datasets, the snapshots are constructed by
aggregating social contacts over successive, nonoverlapping

windows of �t [Fig. 1(b)]. To ensure the robustness and
reliability of our findings, we carefully select a time window
that is relatively stable and appropriate for each dataset
(see Appendix B). The time window we selected and the
basic information of these datasets are presented in Table I.
Specifically, US Air Traffic [24] represents the connections
between US airports from January 2012 to September
2020. Hospital [25] represents the contacts between 29
patients and 46 healthcare workers in a hospital ward in
France during five days. Ph.D. Exchange [26] describes
math Ph.D. Exchange between universities based on a study
of the Mathematics Genealogy Project. Workplace [27]
represents the contacts between individuals measured in an

TABLE I. Information of empirical datasets. The table shows the
names of the eight datasets studied in this paper, the time window
of each snapshot, the number of snapshots (T ), the total number
of nodes (N), and the average degree of nodes (〈k〉) in the static
network.

Names of datasets Time window T N 〈k〉
US Air Traffic 10 month 10 1920 44.27
Hospital 300 min 16 75 30.37
Ph.D. Exchange 10 year 6 230 30.73
Workplace 1500 min 9 92 16.41
Primary School 50 min 20 242 68.73
High School 5 h 9 327 35.58
Village 20 h 16 86 8.07
SFHH Conference 15 min 86 403 47.47

064302-3



BOFAN CHEN, GUYU HOU, AND AMING LI PHYSICAL REVIEW E 109, 064302 (2024)

St
at

ic
 n

et
w

or
k

Te
m

po
ra

l n
et

w
or

k

The minimum degree of nodes removed,  

N
od

es
 a

rra
ng

ed
 in

 a
sc

en
di

ng
 o

rd
er

 o
f d

eg
re

es

FIG. 3. Influence of kmin on C and TC. The first and last two rows of the figure show the influence of kmin on C and TC for each of the
eight empirical datasets in Table I. The horizontal axis of the heatmaps represents the threshold values kmin of the static network below which
the nodes are removed, and the vertical axis represents the nodes arranged in ascending order of their degrees. C and TC for each node are
shown in color. The gray area in the figure means that the nodes under the threshold kmin have been removed from the network. Across all
datasets, the majority of nodes exhibit an increase in C as kmin increases. For efficiency-related datasets, such as US Air Traffic, Hospital, Ph.D.
Exchange, the value of TC increases with kmin for most nodes, mirroring the behavior of C. In contrast, for social activity-related datasets, such
as Primary School, High School, Village, the value of TC decreases with kmin for most nodes, especially when kmin is set to a large value. At
the same time, there are also datasets like Workplace and SFHH where TC shows little sensitivity to changes in kmin. The varying behavior of
TC as kmin shows that TC can be seen as an identifier to distinguish the core-driven patterns of temporal networks.

office building in France in 2015. Primary School [28,29]
represents the contacts between students and teachers in a
primary school. High School [30] represents contacts between
students in a high school in France. Village [31] represents
the contacts between 86 individuals living in a village in rural
Malawi. SFHH Conference [27] represents the face-to-face
interactions of 405 participants at the 2009 SFHH conference
in France.

Due to the presence of noise in temporal networks de-
rived from social data, we preprocess the data by setting a
threshold value kmin for the minimum degree of nodes and
wmin for the minimum weight of edges. This preprocess-
ing step involves removing nodes with a degree lower than
kmin and edges with a weight lower than wmin, which are
calculated from the aggregated static network. Choosing ap-
propriate values for kmin and wmin is crucial because it helps
to filter out accidental interactions (infrequent or incorrectly
recorded interactions) that may interfere with our analysis.
If the values are set too small, these accidental interactions
might affect our results. Conversely, if the values are set too

large, we risk losing significant information. Therefore, we
investigate the effects of kmin and wmin on both the local
clustering coefficient C and the temporal local clustering coef-
ficient TC and observe interesting phenomena across different
datasets.

Figure 3 illustrates the impact of kmin on both the local
clustering coefficient C and the temporal local clustering co-
efficient TC. Initially, as kmin gradually increases from zero,
the value of C of each node in the dataset remains relatively
constant. Therefore, we select specific values of kmin for dif-
ferent datasets to exclude nodes with small degrees and filter
out noise. As kmin continues to increase and approximately
50% of the nodes are removed, C of almost every node starts
to rise. This phenomenon is known as the “rich club effect”,
where large-degree nodes tend to form tightly interconnected
clusters. However, the behavior of TC is different from C.
As kmin increases, efficiency-related temporal networks such
as US Air Traffic, Hospital, and Ph.D. Exchange exhibit a
trend towards stronger clustering among their high-degree
nodes, reflected in TC approaching one [Fig. 3]. On the other
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FIG. 4. The average temporal local clustering coefficient TC and static local clustering coefficient C of nodes with different degrees (k).
The eight plots display the average TC and C values of nodes categorized by their degree (k) in different datasets. The horizontal axis separates
the nodes into two groups based on whether their degree reaches half the degree of the largest node in the network, while the vertical axis
represents the distribution of TC and C values of the classified nodes. TC is depicted in blue, while C is represented in yellow. The change of
average TC and C from small-degree nodes to large-degree nodes are compared by the value �TC/�C, which is shown on the top right of
each plot. Across most datasets, there is a negative correlation between C and k, indicating that nodes with higher degrees tend to have lower
values of C. However, |�TC/�C| < 1 for all datasets, which means the correlation between TC and k is weaker, suggesting that TC is less
influenced by the degree of nodes.

hand, social activity-related temporal networks like Primary
School, High School, and Village show relatively low values
of TC, indicating looser connections among their large-degree
nodes. This difference suggests that in efficiency-related net-
works, the interactions between large-degree nodes maintain
simultaneity, possibly due to the fixed working hierarchy
within the network. For instance, in the air traffic dataset, there
are more flights occurring simultaneously between airports
with higher working hierarchies (e.g., major airports) to en-
hance work efficiency and maximize profits. In contrast, social
activity-related networks exhibit more random interactions
among their large-degree nodes, as these interactions do not
necessarily depend on maintaining connectivity for the overall
functioning of the system. Consequently, these interactions
might not occur simultaneously. In this sense, TC plays a
role of identifier. We can distinguish the core-driven pattern
through the temporal clustering performance of nodes with
large degrees, i.e., whether they still maintain rich club effects
for temporal local clustering coefficients.

In addition, by comparing different nodes, we observe that
the local clustering coefficient C tends to be higher for small-
degree nodes compared with large-degree nodes [Fig. 4]. This
phenomenon can be attributed to dilution, wherein the pres-
ence of excessive neighbors for large-degree nodes leads to
a higher denominator when calculating C, resulting in lower
C values. In fact, for large-degree nodes, the dilution effect
is particularly pronounced when accidental interactions are
present in the temporal network. In analyzing practical prob-
lems, the accidental interactions are noises, which should not
be considered when we care about the clustering properties.
However, these accidental interactions contribute additional
neighbors to the large-degree nodes, significantly diluting
their C values. However, in Fig. 4, TC does not present any
significant correlation with degree k, which means that the

temporal local clustering coefficient TC of large-degree nodes
is not as easily diluted by accidental interactions compared
with C.

This is because when calculating TC we average C(t ) over
time, and those cases that are very fortuitous have a negligible
effect on the results. The lower correlation between TC and
k means that TC can effectively avoid noises from accidental
interactions. This indicates that TC is more robust for captur-
ing the connectivity among the neighbors of nodes, compared
with C.

Figure 5 shows the influence of the wmin on C and TC.
For datasets such as US Air Traffic, Village, Hospital, SFHH,
and Ph.D. Exchange, increasing wmin leads to an increase in
the C values of most nodes. This suggests that edges with
larger weights in these datasets tend to form a triangular
structure, resulting in a clustering of weights. In other words,
edges with high weights tend to cluster among the neighbors
of large-degree nodes. Conversely, in Primary School, High
School, and Workplace, the C values of most nodes decrease
as wmin increases. This implies that the distribution of weights
on edges in these datasets is relatively random, and edges with
high weights do not tend to form a triangular structure.

However, regardless of any specific datasets, the TC values
decrease as wmin increases. This indicates that high-frequency
interactions in the temporal networks are not simultaneous. In
other words, even though nodes may have significant inter-
actions with their neighbors, these interactions do not occur
at the same time, suggesting a lack of synchronicity in the
temporal patterns of interactions.

IV. THE TC-C PATTERNS

Having defined the temporal local clustering coefficient
TC based on the local clustering coefficient C and explored
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FIG. 5. Influence of wmin on C and TC. The first and last two rows of the figure show the influence of wmin on C and TC for each of the
eight empirical datasets in Table I. The horizontal axis of the heatmaps represents the threshold values wmin of the static network below which
the edges are removed, and the vertical axis represents the nodes in ascending order of their degrees. C and TC for each node are shown in
color. In US Air Traffic, Village, Hospital, SFHH, and Ph.D. Exchange, the C of most nodes increases with wmin; while in Primary School,
High School, and Workplace, the C of most nodes decreases as wmin increases. In contrast, the TC of almost all datasets decreases as wmin

increases. Since TC decreases dramatically with wmin, in further discussions, wmin = 1 is chosen for most datasets, except for Primary School
and High School. For these two student datasets, wmin = 2 is selected to exclude accidental interactions, as the C of the small-degree nodes in
these datasets initially shows an upward jump with wmin, indicating a higher rate of accidental interactions.

their properties under the influence of parameters kmin and
wmin, we find that the correlation between TC and C in
different scenarios is different due to the different temporal
properties of the temporal network. With this in mind, we
hope to identify different interaction patterns through analysis
of the correlation between TC and C, namely, TC-C patterns.

Figure 6 shows the TC-C scatter plots for different datasets
from which we can detect five classes of temporal network
TC-C patterns as follows.

Efficiency pattern. In datasets such as US Air Traffic and
Hospital, the data points form a roughly straight line with a
slope of one (TC ≈ C). These networks prioritize maximiz-
ing working efficiency, leading to more interactions among
nodes with higher work hierarchies. The clustering of weights
phenomenon is observed in these networks, and there are
fewer accidental interactions. The stability of interactions and
the clustering of weights contribute to TC being close to C
compared with the random temporal network where the data

points are distributed around the red dash line (TC ≈ pC, see
Appendix A).

School pattern. In datasets like Primary School and High
School, the data points are distributed approximately along a
horizontal line. The C of students with more friends may be
diluted by accidental contacts, while the TC remains unaf-
fected and similar for all students. This pattern suggests that
each student spends a similar proportion of time engaged in
group activities, where interactions occur between every two
members in the group.

Conference pattern. In the SFHH Conference dataset, the
data points are distributed approximately along a vertical line.
The C values of participants are similar, indicating similar
interaction structures. However, the TC values exhibit wide
distribution, with larger nodes tending to form interactions
within group activities (resulting in higher TC for nodes with
large degrees) and smaller nodes tending to form interactions
in pairs (resulting in lower TC for nodes with small degrees).
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FIG. 6. The relation between temporal local clustering coefficient and local clustering coefficient. The eight scatter plots show the
correlation of TC and C in different datasets. The horizontal and vertical coordinates represent C and TC, respectively. The size of a dot
grows as its degree increases. The weighted degrees kw (that is, the sum of the connected edges’ weights) of nodes are shown in color.
The black dotted line represents the reference line for TC = C; the red dashed line represents the reference line for TC = pC, where p is the
average frequency of an edge interacting in a single snapshot, i.e., p = ( 1

T �T
1 |Et |)/|L| denotes the average of occurrences of all temporal edges

divided by the number of edges in static network. From the figure, we can detect five classes of interaction patterns based on the distribution of
data points.

Village pattern. In the Village dataset, the data points are
more dispersed. TC values are generally larger than C for
a significant number of nodes, indicating a preference for
participating in group activities within the village.

Pair interaction pattern. In the Ph.D. Exchange and Work-
place datasets, TC values are lower than C for almost all
nodes. This suggests that nodes in these networks tend to en-
gage in pair interactions rather than simultaneous interactions
in groups.

V. DISCUSSION

In this paper, we propose the temporal local clustering
coefficient for temporal networks to investigate the closeness
and simultaneity of connections between neighbors of nodes.
The TC can be regarded as an extension of the static net-
work local clustering coefficient C, which not only shows the
existence of interactions but also considers simultaneity and
stability. According to the test on empirical datasets, TC gives
more independent information compared with the concept of
degree k and C. By comparing TC and C, we further iden-
tify the interaction patterns of different networks. Therefore,
TC provides an extra value for the analysis of temporal net-
works in avoiding noises and identifying temporal patterns. In
conclusion, our research reveals more information about the
evolution of temporal networks, which helps better understand
the underlying properties of dynamical complex systems.

Regarding future research, although there could be dif-
ferent definitions to describe the temporal clustering phe-
nomenon [32], it would be more important to use theoretical
analysis to prove the robustness of each conclusion. Besides,
it would also be beneficial to consider other measures like
TC and temporal rich club coefficient that capture the si-
multaneity and stability of edge interactions. For example,
the TC only considers the properties of the first-order neigh-
bors of the network nodes (i.e., triangular structure). We may

further study patterns of high-order neighbors or other com-
plex motifs [22,33]. Moreover, we can also explore the change
of the static measures over time for temporal networks, such
as whether Ci(t ) shows a certain pattern with t , etc.

(a) (b)

FIG. 7. The relation between temporal local clustering coeffi-
cient and local clustering coefficient after randomizing the original
network. (a) Randomization of the US Air Traffic with the uni-
form time permutation method, where we keep the corresponding
unweighted static network structure of the temporal network and
randomly rearrange the interaction time of each edge. In this method,
each edge will interact randomly with the same probability p at each
moment. (b) Randomization of the US Air Traffic with the weighted
time permutation method, where we keep the static network structure
as well as the original weights distribution of the dataset. The weights
of each edge are drawn from the given distribution, and the times
of each interaction are uniformly distributed on the whole timeline
based on the different weights of edges. The black dotted line repre-
sents the reference line for TC = C; the red dashed line represents
the reference line for TC = pC, where p is the average frequency
of an edge interacting in a single snapshot, i.e., p = ( 1

T �T
1 |Et |)/|L|

denotes the average of occurrences of all temporal edges divided
by the number of edges in static network. We can see that TC has
a strong linear correlation with C under these two randomization
methods.
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FIG. 8. Influence of time window �t on the temporal local clustering coefficient. The eight heatmaps show the influence of time window
�t on temporal local clustering coefficient for eight empirical datasets. The horizontal coordinates represent the values of �t , and the vertical
coordinates represent each node in the order of smallest to largest degree. Given kmin = 1, wmin = 1 (for Primary School and High School
wmin = 2), TC for each node is shown in color. It is noticeable that TC is relatively stable when �t takes a value in a suitable interval.
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APPENDIX A: METHODS FOR
NETWORK RANDOMIZATION

To investigate the correlation between TC and C, we em-
ploy two randomization methods for the network analysis.

The first method is uniform time permutation [Fig. 7(a)],
where we preserve the corresponding unweighted static net-
work structure and randomly rearrange the appearance time
of each edge. Each edge is randomly assigned a time of
appearance with the same probability p at each moment. It can
be inferred that TC is directly proportional to C, specifically
TC = pC. In the US Air Traffic dataset, Fig. 7(a) demon-
strates a strong correlation between TC and C, supporting our
inference.

The second method is weighted time permutation
[Fig. 7(b)]. Here, we randomize the temporal network while
maintaining the original static network structure and weight
distribution of the dataset. The weights of each edge are
drawn from the given weight distribution, and the interac-
tion times are uniformly distributed throughout the timeline
based on the different edge weights. In Fig. 7(b), we observe
that TC and C still exhibit a strong correlation in the US
Air Traffic dataset, although the slope decreases compared

with Fig. 7(a), indicating a disruption in the clustering of
weights.

APPENDIX B: THE CHOICE OF TIME WINDOW �t

The choice of the time window �t is based on the con-
cept of stability, ensuring that the temporal local clustering
coefficient TC remains relatively stable within the selected
�t . In Fig. 8, we analyze the influence of �t on TC while
keeping kmin = 1 and wmin = 1 (wmin = 2 for Primary School
and High School) fixed for all datasets.

The results show that nodes with a small degree are more
sensitive to changes in �t compared with nodes with larger
degrees. Additionally, TC generally tends to increase as �t
increases. We can roughly divide the change in TC into three
stages. Initially, when �t is very small, TC for all nodes is
zero because there are no strictly simultaneous interactions
according to our assumption that all interactions are transient.
As �t increases, TC grows and reaches a stable value that
is less sensitive to further changes in �t . Finally, as �t ap-
proaches infinity, TC converges to the static network local
clustering coefficient C.

Based on these observations, we select a �t where TC
becomes relatively insensitive to changes in the time window.
This ensures that the chosen �t captures the stable charac-
teristics of the network’s temporal dynamics while avoiding
excessive sensitivity to small variations in �t .
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